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Many wake flows exhibit self-excited flow oscillations which are sustained by the flow
itself and are not caused by amplification of external noise. The archetypal example
of a self-excited wake flow is the low Reynolds number flow past a circular cylinder.
This flow exhibits self-sustained periodic vortex shedding above a critical Reynolds
number. In general, control of such flows requires stabilization of many globally
unstable modes; the present work describes a multiple-sensor control strategy for the
cylinder wake which succeeds in controlling a simplified wake model at a Reynolds
number above that at which single-sensor schemes fail.

Representation of the flow field by a finite set of coherent structures or modes,
which are extracted by proper orthogonal decomposition and correspond to the
large-scale wake components, allows the efficient design of a closed-loop control
algorithm. A neural network is used to furnish an empirical prediction of the modal
response of the wake to external control forcing. This model avoids the need for
explicit representation of the control actuator–wake interaction. Additionally, the
neural network structure of the model allows the design of a robust nonlinear
control algorithm. Furthermore the controller does not necessarily require velocity
field information, but can control the wake using other quantites (for example flow
visualization pictures) which characterize the structure of the velocity field. Successful
control of a simplified cylinder wake model is used to demonstrate the feasibility of
the low-dimensional control strategy.

1. Introduction
Active control of unsteady separated fluid flows has attracted much interest in

recent years (see, for example, Gopalkrishnan et al. 1994; Park, Ladd & Hendricks
1994; Roussopoulos 1993; Tokumaru & Dimotakis 1991; Tao, Huang & Chen 1996).
Control of the circular cylinder wake flow, which is an archetypal unstable flow, has
received a large amount of attention because of a wide range of aeronautical, civil,
mechanical and chemical engineering applications – ranging from noise and vibration
control, chemical mixing improvement, dynamic stall control and lift enhancement
(Cortelezzi, Leonard & Doyle 1994; Cortelezzi 1996).

Above a critical Reynolds number, the wake of a circular cylinder exhibits vortex
shedding oscillations which persist purely as a result of flow instability and which
are not due to the influence of external forcing, noise, or internal pressure feedback.
The flow exhibits self-excited oscillations and this has important consequences for
flow control. A significant region of absolute instability is present in the near wake
and is a necessary condition for self-excited, global wake oscillations (Karniadakis &
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Triantafyllou 1989; Huerre & Monkewitz 1990). For a comprehensive review of the
wake see Williamson (1996).

1.1. Response of self-excited cylinder wakes to external control

The response of the cylinder flow, and absolutely unstable wake flows in general, to
periodic forcing above a threshold amplitude has the characteristics of a nonlinear
oscillator with forced oscillations (Detemple-Laake & Eckelmann 1989). The response
of a circular cylinder wake to open loop forcing can be characterized by two quali-
tatively different regimes, ‘lock-in’ and ‘beat’, which are dependent on the frequency
content of the applied forcing (Karniadakis & Triantafyllou 1989; Detemple-Laake
& Eckelmann 1989).

Several different forcing techniques affect the behaviour of the cylinder flow; how-
ever, the wake response to forcing is similar for each, whether acoustic excitation
of the wake (Detemple-Laake & Eckelmann 1989; Roussopoulos 1993), longitudinal
or lateral vibration of the cylinder (Detemple-Laake & Eckelmann 1989), rotation
of the cylinder (Tokumaru & Dimotakis 1991), alternate blowing and suction at
the separation points (Roussopoulos 1993) or (for low Reynolds numbers) vibrating
wires in the wake (Karniadakis & Triantafyllou 1989) are used. All of these methods
have been proposed for vortex shedding suppression schemes: active control schemes
involving rotation of the cylinder (Tokumaru & Dimotakis 1991) or alternate asym-
metric suction/blowing (Lewit 1992) have met with some success. Open loop control
of a cylinder wake by means of an oscillating aerofoil placed in the near wake has
also been used to alter the position and strength of large-scale vortex structures in the
wake (Gopalkrishnan et al. 1994). These controllers inject circulation into the flow;
but there is a nonlinear interaction between the global modes and the control input
(Schumm, Berger & Monkewitz 1994).

For convectively unstable flows, a linear stability analysis reveals the receptivity of
the flow to external forcing at various frequencies: out-of-phase, sinusoidal forcing at
the same frequency as the dominant Fourier component of the instability wave can, in
theory, stabilize a convectively unstable flow (such as a boundary layer, Metcalfe et al.
1986). Control of global flow oscillations that are the result of absolute instability, as
in the circular cylinder wake, is more difficult. Although the von Kármán mode is the
first global mode to become unstable, a wake flow may possess multiple global modes.
Control of the flow requires attenuation of all of these global modes (Monkewitz
1989). At values of the Reynolds number just above the critical value for self-excited
oscillations, there is typically only one globally unstable mode, resulting in Kármán
vortex shedding (Huerre & Monkewitz 1990); therefore the flow behaviour at each
point in the wake is related to every other by a simple phase shift (Park et al. 1994).
Linear feedback control of such flows is therefore, theoretically, possible by means
of a single sensor-actuator feedback loop. Indeed, single-sensor control of such low
Reynolds number cylinder wakes has been observed experimentally (Park et al. 1994;
Ffowcs-Williams & Zhao 1989; Roussopoulos 1993). At higher values of the relevant
flow parameter, however, other global modes are present. Nevertheless, at only slightly
supercritical Reynolds numbers (Re < 60 from tunnel experiments of Roussopoulos
(1993) or Re < 80 in a numerical experiment of Park et al. (1994)) there often exists
a ‘gain window’ between the threshold amplitudes for the global modes, such that
forcing with an amplitude large enough to suppress the most unstable mode is still not
large enough to destabilize the next global mode. Complete suppression or control of
the wake is therefore still feasible using a single sensor at these slightly supercritical
Reynolds numbers, although there may exist multiple global modes (Park et al. 1994).
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Further beyond the critical value, however, the ‘gain window’ shrinks so that the
forcing amplitude necessary to control the most unstable mode merely destabilizes
the next most unstable mode (Roussopoulos 1993; Monkewitz 1989). Oscillations
may be suppressed at the sensor location (Ffowcs-Williams & Zhao 1989) but are, in
general, exacerbated elsewhere (Roussopoulos 1993). Points in the wake are therefore
not merely connected via a phase shift and so multiple, spatially distributed sensors are
needed for control of the flow.

1.2. Low-dimensional control of self-excited cylinder wakes

The presence of multiple global modes in the absolutely unstable cylinder wake
necessitates the use of multiple control sensors at various streamwise locations for
the suppression of all possible modes (Gopalkrishnan et al. 1994; Monkewitz 1989).
The spatio-temporal response of the wake is nonlinear: a control strategy, based on
a nonlinear model of the flow dynamics is therefore appropriate (Lightbody, Wu &
Irwin 1992).

If the absolutely unstable region is to be adequately represented with multiple
control sensors, then many flow variables (for example velocity or pressure) at
many points throughout the unstable region are needed within the feedback or
control algorithm. The resulting control algorithm involves many variables and will
therefore be complicated and computationally slow. If, however, the complex spatio-
temporal information, needed for nonlinear feedback stabilization of multiple global
modes, is characterized by a relatively small number of quantities, given by a low-
dimensional description of the flow features and their response to external forcing,
then it is reasonable to assert that the feedback control algorithm can be made
simpler and computationally feasible (Gillies & Anderson 1994; Cortelezzi 1996).
Typically, cylinder wake flows are dominated by the dynamics of large-scale spatial
structures; the dynamics of small-scale spatial structures are relatively unimportant
in the evolution of these flows. Physical evidence supports the idea that at least
periodically forced, absolutely unstable flows can be regarded as low-dimensional. For
example, a relatively small number of characteristic spatial structures are observed
in experimental periodically forced vortex streets (for example, twelve spatial modes
have been observed during large-amplitude acoustic excitation of a cylinder wake
by Detemple-Laake & Eckelmann (1989); alternatively, three spatial interaction modes
have been observed behind a cylinder with an oscillating aerofoil in the near wake by
Gopalkrishnan et al. (1994)). It is likely that a wake flow will remain low-dimensional
as long as the forcing input is not too large and the flow is not excited into a
higher dimension state (e.g. with very large control inputs the wake may become
three-dimensional) (Ohle & Eckelmann 1992). A control strategy that is restricted
to measurement and control of just a finite number of large-scale spatial structures
in the cylinder wake is potentially simpler than a control scheme which attempts
to control both the large and small scales of the flow. A control strategy restricted
to large-scale spatial structures is still, however, able to control the most important
features of the wake oscillations.

1.3. Scope of the paper

It is reasonable to assert that control of the two-dimensional wake must be demon-
strated before three-dimensional instabilities are addressed (Schumm et al. 1994). This
paper is specific to the low Reynolds number, laminar, two-dimensional cylinder wake
(the regular range persists up to Re ' 194 (Williamson 1996); however, with synchro-
nized forcing along the span, as say, by cylinder rotations, or by acoustic excitation,
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the regular two-dimensional range can persist up to Re ' 450 (Detemple-Laake &
Eckelmann 1989)), although much of the strategy is generic. A simulation of wake
control is demonstrated on a wake model at Re = 100: this Reynolds number is
above the value where single-sensor linear control schemes fail to suppress all of the
global modes.

Focusing on the laminar two-dimensional wake is advantageous because numerical
simulation of this wake is readily implemented: in numerical simulations all flow
variables are available for analysis without the use of intrusive sensors and control
system computations may be performed in virtual time.

Section 2 describes the utility of the proper orthogonal decomposition (POD) as
a low-dimensional model of the spatial structures in the wake forced by a control
actuator (as measured by spatially distributed sensors). The third section describes
how a mapping between parameters of an actual, physical control actuator and the
response of the POD modes is automatically accounted for by an empirical neural
network. This section also describes how this neural prediction leads to a nonlinear
control algorithm to drive the control actuator. The fourth section is a demonstration
of the scheme on a simplified wake simulation at Re = 100.

2. The method of proper orthogonal decomposition
It is appropriate to search for some readily identifiable coordinate basis that spans

the large-scale components of the wake (at, say, a particular Reynolds number). Such
a basis is furnished by proper orthogonal decomposition (POD). For a comprehensive
review of POD see Holmes, Lumley & Berkooz (1996). The method is slightly altered
here to account for the non-stationary effects of time-dependent control forcing.

It is readily shown that characteristic features, ψ, of the flow correspond to eigen-
solutions of the time-average, spatial correlation matrix, R , of the fluctuating velocity
field, V ′,

R = E{V ′(t)V ′(t)T }. (1)

If the POD modes are to be representative of the wake during a control run, the
modes must be extracted from the wake when forced by a suitable control actuator.
Statistical properties of the wake forced by a time-dependent control will be non-
stationary. The POD is therefore extended (following Glezer, Kadioglu & Pearlstein
(1989)). N disjoint time series, containing M snapshots of the flow velocity field
each, are assembled from forced wake measurements. The wake should be forced at
different amplitudes and frequencies (as in Detemple-Laake & Eckelmann 1989) or
by using a ‘chirp’ signal to ensure that a wide range of POD modes are excited. If N
different flow transients during forcing of the flow are examined, then a concatenated
matrix may be formed – an intelligent choice of first and last points in each series
might be, for example, the start and finish points of one period of a forcing cycle
because no further information is gained from analysis of further forcing cycles. The
correlation matrix for POD expansion of the non-stationary data is formed from
the concatenated data matrix and is the average of the correlations from each distinct
example of forcing (Glezer et al. 1989):

R =
1

N

N∑
i=1

Ri. (2)

At any time, the velocity field can be reconstructed approximately from a linear
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combination of the mean flow and a finite number of modes.

V (t) ≈ V +

M∑
i=1

Ai(t)ψi (3)

where the modal amplitude

Ai(t) = (ψi · V ′(t)). (4)

The sum of the eigenvectors is proportional to the mean energy of the fluctuating
velocity field. If the velocity field is reconstructed using only the modes corresponding
to the N largest eigenvalues, then the proper orthogonal decomposition captures
more of the flow kinetic energy for a given N than any other expansion (Glezer et al.
1989).

It is reasonable to assert that a finite representation of the wake by sub-optimal
POD modes generated from a large enough non-stationary data ensemble is possi-
ble (Glezer et al. 1989): acoustically forced wakes show only a small number (twelve)
of qualitatively different spatial modes (Detemple-Laake & Eckelmann 1989). When
considering the number of time-series required for complete characterization of the
flow (rather than just one set of observed phenomena), the type of forcing is also of
interest. A comparison between the effects of harmonic and an-harmonic forcing for
a plane mixing layer in (Glezer et al. 1989) shows that the wake structures do not
significantly differ between the two forcing regimes. Therefore, modes developed from
one forcing regime are useful for other types of forcing, such as feedback (Glezer
et al. 1989) (the behaviour of forced cylinder wakes is also relatively insensitive to
the exact character of forcing (Roussopoulos 1993; Detemple-Laake & Eckelmann
1989)). For this statement to apply generally, more experimental evidence is required,
but the similarity of the modes generated during two different forcing regimes of the
mixing layer is encouraging.

3. Control of large-scale wake structures
3.1. Introduction of control terms into a prediction of the flow dynamics

Comparison of various forcing techniques has shown that the injection of circulation
into the wake is a common mechanism by which the wake can be controlled (Toku-
maru & Dimotakis 1991; Schumm et al. 1994). This may be achieved by lateral
cylinder vibrations (Detemple-Laake & Eckelmann 1989), cylinder rotations (Toku-
maru & Dimotakis 1991) or alternate suction and blowing (Roussopoulos 1993) or
flapping foils in the near wake (Gopalkrishnan et al. 1994). Alternatively, the cylinder
wake is also sensitive to acoustic forcing (Ffowcs-Williams & Zhao 1989). All of
these control actuations produce similar wake responses and all are able to promote
sub-critical vortex shedding. The nonlinear interaction between control inputs, pro-
vided by such actuators, and the global modes of the flow have, however, eluded
explanation (Schumm et al. 1994). For control of two-dimensional oscillations there
are several qualitatively similar choices for control actuator. For three-dimensional
wakes (at Re > 194 in Williamson 1996), acoustic excitation at one point along the
span has too small an amplitude to influence oscillations at other spanwise loca-
tions (Roussopoulos 1993). However, for 3D wake control, active cylinder rotations
may hold more promise (Tokumaru & Dimotakis 1991): for this type of actuation,
the forced shedding mechanism replaces the natural mechanism and the actuation is
constant along the span.
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Say a particular actuator is chosen for controlling the wake. Following the extended
POD method of Glezer et al. (1989), in § 2, a finite set of POD modes is obtained
from observations of the cylinder wake velocity field forced by the control actuator.
For the design of a control algorithm, which will drive the actuator, a prediction
of the response of the mode amplitudes (and hence, the flow) to control forcing
is useful. The control problem is to drive the actuator so that the observed mode
amplitudes correspond to a desired flow condition. A finite-dimensional dynamical
model of the flow may be obtained from classical Galerkin approximation of the
Navier–Stokes equations. However, the general form of the evolution equation for
the mode amplitudes in the presence of the control input is

dAk
dt

= Gck (A1, A2, . . . , AM, u1(t), . . . , uc(t)) , k = 1, . . . ,M, (5)

where the ui(t) are the time-dependent controls. The functional form of Gck depends
implicitly on the physical interaction of the control input with the flow field; this
interaction has been observed to be a nonlinear process. The effect of the physical
control actuator may be introduced by direct analytical manipulation of the Navier–
Stokes equations. However, mapping the effects of a physical control actuator from
velocity field space to POD mode space (see, for instance, Berkooz, Psiaki & Fischer
(1994)) may be a complicated process, especially for control actuators that are
geometrically complex or otherwise difficult to model: e.g. multiple actuators, acoustic
excitation, flapping foils. The rational addition of terms in the classical Galerkin
approximation resulting from an actual physical control may therefore be very difficult.
An alternative approach is suggested here which circumvents the need for direct
manipulation of the Navier–Stokes equations by automatically introducing physical
control terms with a neural network. Moreover, the neural network prediction of the
flow to control forcing proves ultimately useful for designing a control algorithm.

If the observed response of the wake (and hence the observed mode amplitudes)
to parameters of an actual control actuator is recorded from an experiment, then
the physical control–mode interaction may be estimated empirically by a neural
network. The neural network is trained to predict the observed response of the POD
modes from physical actuation of the velocity field in an experiment. In this way,
the nonlinear mapping between physical controller parameters (such as actuation
frequency and amplitude) and the temporal behaviour of the (forced) wake in POD
space is automatically accounted for.

3.2. Neural network emulation of the forced wake

To emulate the fluid mode amplitude evolution a static (multi-layer perceptron)
neural network is chosen. This choice proves advantageous for the design of a control
algorithm. The reduced-order flow model (5) is represented by an equivalent discrete-
time process described by a nonlinear regressive model of order p (Hush & Horne
1993),

A(n+ 1) = Γ (A(n),A(n− 1), . . . ,A(n− p), u(n), . . . , u(n− p)) (6)

where A(n) = (A1(n), A2(n), . . . , AM(n)) and u(n) = (u1(n), u2(n), . . . , uc(n)). The relation-
ship between present, past and future flow state is predicted (for each discrete time
step) as the network is continually supplied with the actual present and past flow
states. The neural emulator then has the form of a one-step predictor,

Â(n+ 1) = Γ̂ (A(n),A(n− 1), . . . ,A(n− p), u(n), . . . , u(n− p)) (7)
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Figure 1. Neural emulator: one-step predictor.

which is trained to minimize the magnitude of the error vector

e = (A(n+ 1)− Â(n+ 1)). (8)

Error values do not accumulate, because there is no feedback in the static network,
and so the network can be trained to provide a very accurate prediction of the
future fluid state. A multi-layer perceptron, used as a one-step predictor, to emulate
the nonlinear response of the fluid to a control input is shown schematically in
figure 1. The network is trained by recursive adjustment of the connection strengths
in the network by the backpropagation algorithm, which is an error gradient descent
technique designed to minimize the mean-squared error of the output (Haykin 1994;
Hush & Horne 1993). The local error gradient at each node of the network is
computed by backpropagation of the network error from the output (where the error
is the difference between the actual and the desired network response) back to the
input.

3.3. Nonlinear control

The neural emulator of the flow dynamics provides a prediction of the fluid state,
given initial mode amplitude conditions and values for external control parameters.
The predicted response of the fluid is used to design a controller, such that the
predicted response to an applied control minimizes the control system error and the
flow is driven towards a desired state.

If the neural emulator is fed a control input (for example, the amplitude and
frequency of actuation), it will provide predicted values for the mode amplitudes in
response to actuation at the next time step (Nguyen & Widrow 1990).

u(n),A(n)→ Â(n+ 1). (9)

The difference between the predicted amplitudes, Â, and the desired set of amplitudes,
Ad, for the control system is the control system error vector,

eCS = (Ad(n+ 1)− Â(n+ 1)). (10)

This error does not, however, directly reveal the error in the applied control,

eu = (ug(n)− u(n)), (11)

where ug is the unknown control that would either provide a control system error
of zero magnitude (the ug applied to A(n) such that |(Ad(n+ 1)− Â(n+ 1))| = 0), or
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the unknown control that would make the magnitude of the control system error less
than the previous value (the ug applied to A(n) such that |(Ad(n + 1) − Â(n + 1))| <
|(Ad(n) − Â(n))|). The error in the applied control, rather than the control system
error, is necessary to adjust the control to provide the desired fluid response at the
next time step (Lightbody et al. 1992; Jacobson & Reynolds 1993).

The error in the applied control is, however, available by backpropagation of the
control system error vector, through the emulator, to the control inputs because the
emulator is a neural network (Lightbody et al. 1992; Jacobson & Reynolds 1993;
Nguyen & Widrow 1990). The control system error, backpropagated through the
emulator with its weights held fixed, is used to train a controller neural network
to apply a suitable control input to the flow (Nguyen & Widrow 1990). The error
gradient at a controller network output node is treated like an error gradient of an
internal hidden node – as if the controller and emulator are one network (Jacobson
& Reynolds 1993). The controller weights are updated by further backpropagation
through the controller so that a better control input is provided at the next time
step. The neural control process is shown, schematically, in figure 2. This type of
control is very robust to external perturbations (Lightbody et al. 1992) because the
control algorithm (defined by the controller weights) is updated at each time step (so
the control is adaptive). The control is a combination of either nonlinear or linear
feedback of the present mode amplitudes and a nonlinear function of the control
system error, depending on whether the controller network is nonlinear or linear,

u(n) = f(A(n)) + g(A(n)− Â(n)) (12)

where f is a function of the controller network, and g is a function of the emulator
network. The neural control scheme, therefore provides a nonlinear control that drives
the fluid state towards a desired combination of mode amplitudes, without explicit
modelling of the effect of the control on the flow field or recourse to complicated
multi-variable nonlinear control theory (Jacobson & Reynolds 1993). The controller
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does not require an inverse of the emulator mapping to exist and will drive the system
state closer to the control goal irrespective of the existence of an inverse model of
the flow dynamics.

3.4. Neural estimation of the POD modes

The emulation and subsequent control of the fluid flow is encapsulated within the
empirical neural network framework. The extraction of the POD modes is also an
empirical process, and can therefore be rearranged into a neural network format to
provide continuity within the modelling and control scheme. Recursive estimation
of the POD modes avoids the need for storage and calculation of a potentially
large correlation matrix and also avoids the need for direct numerical calculation of
the correlation eigenproblem. The POD method is a linear decomposition and can
therefore be performed by a neural network consisting of only a single layer of linear
neurons (Haykin 1994).

This network then acts as a linear filter that extracts the mode amplitudes from
an examination of the flow field, performing the calculation of equation (6). The
mode amplitude filter, which has the structures of the POD modes contained in its
weights, is implemented in the control scheme as shown in figure 2. The controller is
fed a measurement of the flow field, from which it calculates the mode amplitudes, a
control output and a predicted response. The control output is applied to the actual
flow.

3.5. Control sensors

It is likely that complete suppression of global flow oscillations in the two-dimensional
wake necessitate the use of multiple sensors – ideally a ‘picture’ of the flow field in
response to control actuation. This poses no difficulty in a computational scheme (as
is considered in this paper), where the entire velocity field is available. However, if
the control strategy is to be implemented in an experiment then it is unlikely that the
entire velocity field could be measured. Velocities at various spatial locations could, in
an experiment, be obtained from a hot-wire rake (as in Glezer et al (1989)). From the
results of Roussopoulos (1993) it seems that hot wires for controlling the flow should
be placed within the absolutely unstable region (i.e. within 5 cylinder diameters of
the cylinder). Arrangements of hot wires used as control sensors, placed at different
streamwise locations, may increase the ‘controllable’ range of Reynolds numbers.

For higher Reynolds number flows, there are many global modes: this may ne-
cessitate using more sensors than can be practically implemented with intrusive hot
wires. Non-intrusive methods of velocity-field measurement require seeding the flow.
PIV, for instance, could obtain a velocity field ‘picture’; however, the pre-processing
required makes the use of this technique difficult for implementation in a control
scheme.

In the strategy outlined in this paper, the temporal response of the flow is predicted
using a neural network. This network does not necessarily require the POD modes to
be constructed from the velocity field (unlike in a Galerkin approximation). Instead,
any flow structure in the wake which can be used to indicate the presence of vortex
shedding can be used to generate POD modes. For example, POD modes could be
extracted from grey-scale CCD pictures of a wake flow seeded with particles. A neural
emulator could then estimate the response of these visual flow structures (which are
indicative of the vortex shedding response) to control actuation. The passage of
smoke structures could be used to indicate the global modes in the wake (see, for
instance the smoke pictures in Schumm et al. (1994), or the grey-scale pictures of
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aluminium flakes extracted in Gopalkrishnan et al. (1994) and Williamson (1996));
direct velocity field measurements are not required. As long as flow visualization
structures, such as smoke patterns, are observed when they are close to the cylinder
(in or near the absolutely unstable region) then they correspond closely to actual
structure in the velocity field (farther downstream, smoke structures can persist, even
when no coherent vortex structures exist in the velocity field (Holmes et al. 1996)).

4. A prototype wake control problem
To illustrate the utility of the low-dimensional control method the unsteady velocity

field of a low Reynolds number, two-dimensional cylinder wake is simulated. The
cylinder flow is simulated numerically, so that the entire velocity field is available for
analysis. The velocity fields at various points in time in a wake transient (during the
unforced growth of oscillations) are used to form a characterization ensemble. To
characterize non-stationary flow features that are the result of a control input and also
to predict the mode dynamics it is necessary that the cylinder flow is forced by a time-
varying control input. To obviate the large computational costs involved in forcing the
high-resolution numerical solution of the wake the response of the flow is simulated by
a prototype model. Simulation of the control strategy with a full numerical solution of
the forced Navier–Stokes equations is preferable for accuracy but is computationally
intensive. It is appropriate that initial testing of the control strategy is employed on a
simpler prototype flow so that identification of important parameters in the controller
proceeds quickly (most of the computational effort required for a full numerical
solution concentrates on modelling the flow itself and identification of important
parameters in the controller is not straightforward) (Cortelezzi et al. 1994). The
prototype flow is a reduced-order form of the flow equations with an artificial control
input. The reduced-order prototype flow is based on a set of POD modes developed
from the unforced numerical (CFD) simulation. The validity of the prototype model
is discussed in this paper (both with respect to unforced flows, where a quantitative
comparison with the full numerical solution can be made, and with respect to forced
flows, where only a qualitative comparison between the model and experiment can be
made). The prototype captures some important stability features of the unforced flow
and accurately represents the spatial and temporal characteristics of the unforced
flow. The prototype also mimics some of the features of the forced cylinder wake,
and it can be asserted that the prototype flow is a reasonable qualitative model
of the forced and unforced cylinder wake for initial testing of the control strategy.
The prototype flow model can be integrated easily and is used to provide artificial,
non-stationary velocity fields for characterization and subsequent control.

4.1. Numerical solution of the laminar cylinder wake

The cylinder flow is simulated numerically, using the commercially available, finite
difference, CFD package, FLUENT v4.10. Uniform inlet velocity at a Reynolds
number of 100 ensures that the wake is within the laminar vortex shedding region
(47 < Re < 250). The turbulent wake Re > 250 is more difficult to simulate. The
finite difference grid is 35 cylinder diameters long by 10 cylinder diameters wide and
a body-fitted grid is used, comprising 6600 cells.

The power spectral density, calculated from a 512 point Hanning window of the
wake velocity signals is shown in figure 3. The signal is seen to contain one dominant
frequency (the vortex shedding mode) and three significant higher harmonics.

The Strouhal number calculated by the FLUENT method is 0.153 and this com-



Low-dimensional control of the circular cylinder wake 167

100

10–4

10–8

10–12

0 2 4 6 8 10 12

Frequency, f /F

Po
w

er
 s

pe
ct

ra
l d

en
si

ty

0 2 4 6 8 10 12

Frequency, f /F

100

10–4

10–8

10–12

(a) (b)

Figure 3. Power spectral density of velocity signal: (a) CFD solution, and (b) prototype wake.

Figure 4. Typical instantaneous flow streamlines.

pares fairly well with those calculated by other authors (Kim & Benson 1992). The
streamlines and velocity vectors obtained in the solution are also qualitatively similar
to those obtained by other authors (Taylor & Morgan 1980; Kim & Benson 1992).
Typical realizations of the flow streamlines during shedding are shown in figure 4.

4.2. Simulation of a forced cylinder flow

A prototype flow model, which has the purpose of testing the feasibility of the control
scheme, is introduced here (Cortelezzi et al. 1994; Cortelezzi 1996). The essential
properties of the prototype model are that it retains the important absolute instability
features of the cylinder flow, produces qualitatively correct flow responses to forcing,
and produces qualitatively correct spatial velocity fields, while remaining simple and
easy to integrate.

A first approximation to modelling the forced flow is obtained by using a model of
the unforced flow. A small transient of the wake is available from the unforced CFD
solution. Velocity field data collected during the growth of wake oscillations, from the
steady state, encapsulates wake dynamics in a neighbourhood of the unforced vortex
street.

Twenty velocity fields from two flow cycles approaching the Kármán vortex street
are collected. This number of snapshots is appropriate for POD characterization of
such a temporally simple, laminar, unforced wake: for example, 20 POD snapshots
are used in Deane et al. 1991 for the Re = 100, 150 and 200 cylinder wake and
are shown to provide adequate representation of the unsteady velocity field. The
ensemble average of all of the velocity fields, which approximates the time-average
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mode 1 mode 2

mode 3 mode 4

Figure 5. Contours of velocity magnitude of the first four POD modes.

velocity field, is calculated and subtracted from each velocity field to form twenty flow
‘snapshots’. Only the first four POD modes capture significant flow energy and so the
higher modes are neglected. A higher Reynolds number flow, a turbulent flow, or a
time-forced flow would exhibit much richer mode composition. Contours of velocity
magnitude, (u2 +v2)1/2, of the first four POD modes developed from the CFD data are
shown in figure 5 (cf. Deane et al. 1991). Modes developed from double the number
of snapshots (40) are similar in appearance.

A Galerkin approximation of the Navier–Stokes equations provides a succinct
description of the unforced flow dynamics, but is difficult to establish because the
Galerkin method involves spatial differentiation of the modes and mean flow and
calculation of their vorticities. Numerical differentiation of the modes is difficult, and
introduces error, because the modes are formed from a spatially discrete, irregular
grid. The structure of the Galerkin model is, however, well documented in the
literature. A transient set of velocity fields (obtained from the CFD solution during
the growth of oscillations), from which the POD mode amplitudes and time derivatives
at each time point are measured, can be used to fit the unknown coefficients of the
quadratic Galerkin equations by least squares (rather than using a traditional Galerkin
approach).

The spatial features of the cylinder flow, represented by the CFD data, are ade-
quately approximated by just four modes. However, a four-mode quadratic model of
the wake proves to be unstable (compare with Deane et al. 1991). Cubic terms may
appear in a nonlinear Galerkin model and are introduced here to generate a stable
model without adding extra modes to the four-mode prototype model.

The addition of ad hoc forcing terms to dynamical models of the cylinder dynamics
is known to produce qualitative agreement with experiment (Ohle & Eckelmann 1992).
For example, the addition of an interior sinusoidal forcing term to a low-order, cubic
model of the Re = 114 flow past a circular cylinder produces qualitatively correct time
histories and qualitatively correct regions of entrainment (Ohle & Eckelmann 1992).
Simple addition of forcing terms to the least-squares developed model should also
produce qualitatively correct results, and mimic the response of the flow to excitation.
Obviously, a control input will affect each of the prototype mode equations by a
different amount as the interaction of the control with each prototype mode depends
on the spatial structure of each mode. In the Galerkin model, addition of a source
term to the Navier–Stokes equations results, to a first approximation, in an extra
forcing term which is the inner product of each mode with the perturbation to the
velocity field from the control actuator for each mode equation, (ψk ·fafx), where fa is
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the control amplitude and fx is the spatial distribution of the velocity resulting from
the control actuator. An amplitude and spatial distribution of a localized interior
control input at a coordinate (xc, yc) in the wake is obtained from Karniadakis &
Triantafyllou 1989:

F(x, y, t) = fa(t) exp
(
−D((x− xc)2 + (y − yc)2)

)
, (13)

where D is the rate at which the contribution of the force decays with distance from
the source. The position of the localized control input and the value for the decay rate
is chosen such that the forcing is small at the domain boundaries and significant only
in the near wake (which is necessary for control of the global modes) (Karniadakis &
Triantafyllou 1989; Roussopoulos 1993). The position of the near-wake control wire
is shown in figure 9. This form of control simulates an interior forcing provided by an
active control device such as a vibrating wire (Karniadakis & Triantafyllou 1989). The
fluid adjacent to the control device aquires an acceleration equal to the vibrating source
– further from the source the acceleration decays. This distribution of control provides
forcing of the near wake consistent with the boundary conditions as the amplitude of
the control at the domain boundaries is very small. Vibrations of the cylinder (which
are known to be suitable for control of global flow oscillations (Schumm et al. 1994))
give rise to a similar forcing (Karniadakis & Triantafyllou 1989). The complete form
of the prototype flow model is, for k = 1, . . . , 4,

dAk
dt

= cko +

4∑
i=1

ck1iAi +

4∑
i=1

4∑
j=1j>i

ck2ijAiAj +

4∑
i=1

4∑
j=1j>i

4∑
l=1l>j

ck3ijlAiAjAl + ck4fa, (14a)

V (t) = V +

4∑
i=1

Ai(t)ψi, (14b)

where the Ak(t) are time-varying amplitudes of the first four POD modes, ψk , of the
entire cylinder wake, established from the CFD velocity field ensemble.

The control input, although introduced somewhat artificially to the unforced pro-
totype model, is useful because it produces temporal flow responses that are in
qualitative agreement with experimental observations of forced cylinder wakes. This
qualitative agreement is discussed in the next subsection. Similar models for forced
wake flows are cited in the literature (Ohle & Eckelmann 1992).

4.3. Validity of the prototype flow model

The prototype flow model (14) consists of a spatial part (14b), which describes the
spatial structure of the velocity field given a set of mode amplitudes, and a temporal
part (14a), which determines the dynamical behaviour of the amplitudes. The average
normalized kinetic energy error over one period of the four-mode reconstruction is
low (= 0.03). The spatial structure of the unforced cylinder wake is therefore described
adequately by the prototype flow model (14b), as long as the correct modal amplitudes
are specified by (14a).

Given that (14b) adequately reconstructs the unforced velocity fields which consti-
tute the unforced data ensemble, the validity of the temporal part of the unforced
prototype flow, (14a), is of interest. Starting integration of the model with the mean
flow, or zero mode amplitudes, as an initial condition for the velocity field should
(with reference to experimental cylinder wakes) result in temporal growth of the von
Kármán vortex shedding mode. The growth of oscillations is observed, in experiment,
to be exponential in its linear stages, leading to limit-cycle oscillations. The growth
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Figure 6. Temporal growth of unforced prototype modes.
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Figure 7. Comparison between CFD flow (dotted lines) and prototype model (solid lines):
mode amplitudes on limit cycle.

of oscillations is accurately modelled by a Landau equation and the oscillations
predicted by the prototype flow are, indeed, comparable to those determined by a
Landau equation and those observed in experiment (Ohle & Eckelmann 1992). The
growth of oscillations resulting from integration of (14a) are depicted in figure 6,
which are typical of experimental wakes and Landau models. The qualitative nature
of the instability is important for testing the feasibility of the control scheme, and
the growth of instability, from the mean flow, is adequately represented by the flow
prototype.

The time histories of the mode amplitudes measured from the CFD simulation
and those calculated by integration of the prototype are shown in figure 7. The solid
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Figure 9. Geometry of cylinder, control wire and two velocity sensors.

lines are the mode amplitudes predicted by the unforced prototype, and the dotted
lines are those measured directly from the CFD data ensemble. The model predicts
a Strouhal number just 2% greater than that observed from the CFD integration
of the wake and the maximum mode amplitudes are also predicted accurately. A
reconstructed time series for velocity signals at two different points in the unforced
cylinder wake is shown in figure 8; the behaviour of the velocity at these two points,
which is shown in figure 9, is predicted adequately. The power spectral density of a
512 point Hanning windowed time series of the velocity signals calculated from the
flow prototype can be compared to that of the original CFD solution in figure 3. The
figure shows the predicted natural shedding frequency and three higher harmonics of
the prototype flow.

For the prototype model to be of use in testing the feasibility of the control scheme,
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Figure 10. Example of prototype forcing entrainment region.

however, the response of the prototype to external control forcing has to be correct,
at least qualitatively. After integration of the prototype, with harmonic control inputs
(each mode is perturbed by a different amount corresponding to the inner product
of each mode with the forcing in equation (13)), qualitative agreement with some
of the aspects of experimental cylinder wakes is found. During periodic forcing, the
prototype flow is characterized by lock-in states and non-lock-in states analogous
to those that are observed in actual cylinder wakes (Karniadakis & Triantafyllou
1989; Detemple-Laake & Eckelmann 1989). Figure 10 shows points on the boundary
between lock-in and non-lock-in states for the prototype flow model. The points on
the figure are the points in control frequency and amplitude phase space where the
wake oscillations cease to have a single set of peaks in the power spectrum of velocity
signals. The frequency axis is normalized by the natural shedding frequency. The figure
therefore represents a lock-in region, or region of entrainment, for periodic forcing
of the prototype flow and is in qualitative agreement with the entrainment regions
observed in experimental, forced cylinder wakes (Olinger & Sreenivasan 1988), high-
order numerical simulations of forced cylinder wakes (Karniadakis & Triantafyllou
1989) and entrainment regions predicted by other low-dimensional wake models (Ohle
& Eckelmann 1992). Entrainment regions, which are some of the most significant
features of the forced cylinder wake (Olinger & Sreenivasan 1988), are modelled
adequately by the prototype (only a qualitative agreement is necessary for initial
testing of the control strategy). The temporal behaviour of the forced prototype flow
is therefore also in agreement with experiment.

The spatial structure of the forced prototype is less representative of an actual
cylinder wake because the prototype consists of only four spatial modes: many
more modes are necessary for the spatial characterization of all of the flow features
resulting from external perturbation of the wake. The ability of the prototype model
to encapsulate the forced spatial structures of the flow, rather than just the temporal
features, is of interest. The stationary POD basis encapsulates a small region of
the forced phase space (i.e. the region corresponding to the growth of von Kármán
shedding). The POD modes satisfy the flow boundary conditions (the control input is
significant in the near wake but is almost zero on the domain boundaries. The control
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input is therefore consistent with the boundary conditions) and the POD modes are
orthonormal and satisfy incompressibility. The stationary POD basis can therefore
be expected to provide some degree of approximation to other flow features outwith
the characterization ensemble (Sirovich 1987) (for example, features of forced flow).
However, in the literature, a POD basis consisting of only six modes was deficient
at representing a cylinder wake flow at off reference Reynolds numbers in Deane
et al. 1991 (mainly because of the differences in mean flow between different Reynolds
number wakes). The four-mode, stationary POD basis can thus be expected to provide
only a crude approximation to the velocity fields of forced, non-stationary flows.

In summary, the prototype flow model: produces, with little computational effort,
velocity fields that predict, quantitatively, the spatio-temporal growth of von Kármán
vortex shedding behind the cylinder; predicts, quantitatively, the spatio-temporal
behaviour of the cylinder wake during natural limit cycle oscillations; and predicts,
qualitatively, the temporal response of the cylinder wake to excitation. The prototype
also contains a degree of spatial complexity (i.e. global flow oscillations are not
always recordable from any single coordinate). The predictions are in agreement
with experimental observations of cylinder wakes and with higher-order simulations
(Karniadakis & Triantafyllou 1989; Ohle & Eckelmann 1992; Noack et al. 1992;
Olinger & Sreenivasan 1988; Noack & Eckelmann 1992; Deane et al. 1991).

5. Control of the prototype cylinder wake
5.1. Controller mode extraction

The first step in the control strategy is determination of the principal POD modes of
the non-stationary prototype velocity fields (obtained from the forced prototype) with
a linear neural network tool. The velocity fields of the prototype flow are sampled at a
lower spatial resolution than that of the prototype and random, uniformly distributed,
noise is added to the measured velocity fields, to simulate experimental uncertainty.
The network data ensemble therefore consists of a series of noisy, low-resolution,
velocity fields of the forced prototype flow, from which the first two ‘non-stationary’
modes are extracted for use by the control scheme. These ‘non-stationary’ modes are
termed controller modes. The mode extraction is performed on a section of the near
wake of the cylinder using a 40× 15 regular, Cartesian grid, rather than the 110× 60
irregular grid of the entire CFD wake – the mode extraction network is therefore
presented with only limited information of the CFD wake.

The spatial noise field added to the prototype flow field is normally distributed,
and mode extraction is performed on several sets of noisy flow field ensembles, with
different noise variances, to determine the effect of random uncertainty on the mode
extraction network. This corruption of the velocity field is used to introduce some
uncertainty, which is likely to exist (in some form) in an experiment, into the flow
field measurements. The random corruption is not meant to be representative of
any particular fluid mechanical noise (turbulence for example is not random) but is
introduced to check the robustness of the characterization and control strategy. (The
actual sources of noise in an experimental flow derive from environmental, acoustic
noise, electrical noise in measurement apparatus, transition to turbulence and if, for
example, smoke flow is used to visualize the flow, then uncertainty is introduced
because the smoke particles do not follow the flow exactly.) The mean (training
ensemble average) flow field is subtracted from each member of the ensemble, which
is then characterized by the POD.
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The structure of the velocity field is affected adversely by addition of the noise, but
the first two modes developed for velocity fields that are noise-free, or have a medium
or high noise variance show no significant differences: the lower energy modes are
neglected and so the POD mode extraction process acts as a noise filter and extracts
only large-scale coherent structure, neglecting the noise which has low energy and is
uncorrelated.

The time-varying mode amplitudes are output by the mode extraction network on
input of a time-dependent velocity field.

5.2. Nonlinear prediction of the prototype flow response

The observed response of the controller modes to excitation of the prototype flow
is used to train a nonlinear neural network emulator that forms the core of the
control strategy. The prototype flow is subjected to uniformly distributed, random
bursts of control input at various amplitudes. The control input is discrete, and each
control input lasts for a tenth of a flow period. After the addition of the control
the prototype flow is integrated for one tenth of a flow period and the flow field is
measured and input, along with random uncertainty, to the mode extraction network.
The mode extraction network supplies the controller mode values after the addition
of the control input. The training ensemble for the neural emulator consists of a time
series of present controller mode amplitudes (measured from a velocity field ensemble
with a medium noise level), the value of the present control, and the future controller
mode amplitude after one tenth of a flow period. The emulator time step, of one
tenth of a flow period, is chosen to be reasonably small to provide accuracy but large
enough so that a linear model of the flow would not suffice. It is preferable that
the time step is reasonably large (a real controller requires a finite time within the
time-step value to perform computations and actuate the control mechanism). The
amplitude range of the control input is, however, limited to a small finite value as
would be the case in a real flow. In a real flow the control amplitude is limited so that
the unstable global modes are stabilized without modification of the mean flow and
so that a higher-dimension dynamical state (turbulence for example) is not excited.

The smallest, and therefore best, network that produces results consistent with the
training data is a 4/12/2 network (the network architecture is two layers of 4 and
12 neurons connected to two output neurons – see Haykin 1994 for example). For
comparison, an 8/24/2 network and a 16/48/2 network are also trained to emulate
the training data. The larger networks, however, take significantly longer to train.
While the generalization of the 4/12/2 network is quite good, the generalization of
the 8/24/2 network and the 16/48/2 network is poor (i.e. only the 4/12/2 network
performs well on data outwith the training set). Because the chosen 4/12/2 network
contains relatively few weights, and only predicts the system state at the next time
step, network training is quite fast. The network achieves a specified error goal,
such that the sum of the squared output error is less than 0.001, after 267 cycles,
starting from small, random weights, through the 1000 member training ensemble.
The network is trained using an adaptive learning rate, which changes to provide fast,
but stable, learning, and a momentum term of 0.95 which speeds up convergence.

5.3. Adaptive control of the prototype flow

A small, two-layer (and hence easy to train) nonlinear network is used to provide the
control input to the prototype flow and to the emulator, given the present amplitudes
and a measure of the error in the applied control. The controller, being a nonlinear
network, has a maximum output amplitude of ±1 (a physical controller would
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Figure 11. Prototype flow response during a control run: control switched on
after six limit-cycle oscillations.

also have maximum actuation amplitudes). The difference between the predicted
mode amplitudes and the desired zero oscillation state is backpropagated through the
emulator, with its weights held fixed, and then backpropagated through the controller,
whose weights are updated in order to provide a better control. The control is input
to the prototype flow and the control simulation proceeds to the next time step. The
controller therefore learns adaptively to provide a control that is a function of the
present controller mode amplitudes and the backpropagated error between the modes
and a desired state.

A typical control simulation, incorporating measurement uncertainty, is shown in
figure 11. Control is switched on after six limit-cycle oscillations (delimited by the first
large tick mark on the time axis). After a further 30 periods of oscillation the flow
oscillations in the flow field are very small and vortex shedding is suppressed. After
stabilization of the vortex shedding the control input necessary to maintain stability
is only enough to stabilize disturbances due to the background noise in the flow. The
qualitative nature of the control input can be compared to the experimental flow
control results of (Roussopoulos 1993). The control is switched off after the second
tick mark on the time axis (after approximately 600 controller steps, or a further
64 flow periods). The oscillations grow exponentially after switching off the control.
The prototype flow field that results from the control scheme is seen to be almost
indistinguishable from the mean flow (figure 13). The control time history is shown
in figure 12. The control input is markedly nonlinear at the start of the control run,
when the mode amplitudes are large, but is almost harmonic towards the end of the
run, when the mode amplitudes are small. The initial nonlinear control suggests that
a linear control method would take longer to control the flow. The controller, in this
prototype wake, demonstrates nonlinear feedback in the early stages of control. This
accords with what is known about wake dynamics: although the flow instability is
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Figure 13. Streamlines of prototype wake immediately behind cylinder after successful
suppression of oscillations.

linear, the Kármán street is a saturated nonlinear state and behaves like a nonlinear
forced oscillator. Indeed a similar control strategy based on a linear emulator and
linear controller takes significantly longer to suppress the flow than the nonlinear
scheme.

6. Conclusions
This paper describes a scheme for control of global flow oscillations in a low

Reynolds number two-dimensional cylinder wake. Active control of self-excited wake
oscillations that are the result of global instability is not, in general, possible via
single-sensor linear feedback. The inability of single-sensor feedback to control such
absolutely unstable wakes is exemplified by numerical and experimental results of
single-sensor control schemes: oscillations may be stabilized at the sensor location
but exacerbated elsewhere by the destabilization of further global modes. Single-
sensor control cannot stabilize all of the global modes. Multiple-sensor control of
such absolutely unstable flows is therefore appropriate. A control strategy based on
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the feedback of multiple (spatially distributed) measurements of the oscillating wake
would be complex and computationally slow. It is reasonable to assert that a control
strategy which is based on a low-dimensional description of the flow features would
be simpler and therefore computationally feasible.

A nonlinear, low-dimensional model with an artificial forcing term is used as a
prototype absolutely unstable flow. The prototype flow achieves good agreement with
unforced cylinder flow solutions obtained by high-order numerical simulation. The
prototype also captures some of the qualitative features of experimental, forced cylin-
der wakes. The prototype is used to produce artificial, or simulated, non-stationary
velocity fields for characterization by the controller. The controller is assumed to have
only limited information about the flow (i.e. it is given lower-resolution, noisy data
and only two controller modes, rather than four modes, are extracted). Nevertheless,
the nonlinear emulator predicts the flow dynamics successfully and the nonlinear
controller suppresses the oscillations representative of vortex shedding.

Successful control of a simplified prototype wake has demonstrated the feasibility
of the control strategy for spatially complex, self-excited wake flows like the circular
cylinder. The control is robust to external perturbations and noisy velocity field
measurements.

The controller achieves stabilization of the prototype wake at a Reynolds number
above that at which single-sensor linear control schemes fail; the extra capability
of the control strategy may be attributed to the feedback of spatially distributed
POD modes, rather than single-sensor measurements, and also the use of a nonlinear
predictive model of the large scale flow dynamics.

The next important stage in this research is to implement the control strategy
outlined in this paper on a full Navier–Stokes solution of the cylinder flow. Full
numerical solution will have more spatial complexity and more POD modes will be
necessary for flow characterization. It is expected that the next implemetation of the
controller will be on a low Reynolds number, laminar wake (to obviate the additional
complexity of three-dimensionality and turbulence). The author is currently adapting
the controller to the one-dimensional complex Ginzburg–Landau equation.

Once the wake control strategy is implemented on a full Navier–Stokes solution, an
experimental study may be undertaken. Experimental implemetation of the control
strategy will have to address spatially distributed flow measurements (with a rake of
hot wires for example, or by characterization of a smoke-seeded flow).

The author wishes to acknowledge the advice of R. B. Green and J. Anderson of
the Department of Aerospace Engineering at the University of Glasgow. Part of this
work was supported under EPSRC grant number GR/L59030.
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